Breaking the 2212 Barrier: A Hybrid Algorithm for
16 x 16 Matrix Multiplication with 2208 Variable
Multiplications

Archivara Research Team

Abstract

We present an explicit hybrid algorithm for multiplying two 16 x 16 matrices over any com-
mutative field K with char(K) # 2 using exactly 2208 variable multiplications (multiplications
in which both operands depend on the inputs), plus additions/subtractions and multiplica-
tions by fixed rational constants. This improves the widely cited 2212-multiplication upper
bound for the commutative case listed by Drevet—Islam—Schost [1].

The construction composes two ingredients at different algebraic levels: (i) an outer non-
commutative bilinear 4 x 4 matrix multiplication algorithm using 48 multiplications with
rational coefficients, due to Dumas—Pernet—Sedoglavic [2], applied to 4 x 4 block matrices;
and (ii) an inner commutative 4 x 4 multiplication scheme using 46 multiplications, attributed
to Waksman [3] and discussed in a division-free even-n framework by Rosowski [4], used
to evaluate each of the 48 block products over K. The resulting multiplication count is
48 - 46 = 2208.

A central point is model clarity: the inner 46-multiplication routine exploits commutativity
and is not bilinear; therefore, our improvement concerns commutative straight-line multiplica-
tion count and does not imply a new tensor-rank upper bound for (16,16,16). We provide a
compact exact-arithmetic verifier that checks correctness and the stated multiplication counts.
A reference implementation is available at [5].

1 Introduction

Matrix multiplication is a fundamental computational primitive. Besides the vast literature on
asymptotically fast algorithms, there is a separate and practically motivated line of work on ezact
multiplication counts for fixed small sizes (especially when the base-ring multiplication dominates
additions). Drevet—Islam—Schost explicitly motivate this regime for rings such as multiprecision
integers, polynomials, and operator algebras [1].

The 16 x 16 case is a natural milestone:
e It is the smallest “hardware-aligned” power-of-two size often used as a tiling granularity.

e It is large enough that multi-level composition techniques (blockings of blockings) become
interesting, but still small enough to admit detailed algebraic constructions and verification.

1.1 The 2212 reference point

In the commutative case, Drevet—Islam—Schost tabulate an upper bound of 2212 multiplica-
tions for the product (16,16,16) (Table 4 in [1]), obtained through composition and “peeling”
techniques applied to existing small-dimension schemes. This value has been widely used as a
benchmark in the small-matrix multiplication literature.

The present note observes that, once a rational-coefficient 48-multiplication non-commutative 4 x4
building block became available [2], a straightforward hybrid composition yields 2208 variable
multiplications for 16 x 16.

1.2 Contributions and scope
Our contributions are:

1. We formalize a clean hybrid composition that yields 2208 variable multiplications for 16 x 16
multiplication over commutative fields of characteristic # 2.

2. We clarify the computation model: the improvement is in commutative straight-line multi-
plication count and does not translate into a tensor-rank bound for (16, 16, 16).

3. We provide an exact-arithmetic verifier (instrumented multiplication counter) to validate
correctness and operation counts.

We do not claim practical speedups for floating point arithmetic; the addition count and data
movement may dominate in many settings, as already emphasized in [1].

2 Computation models and terminology

2.1 Non-commutative bilinear algorithms (tensor rank)

Definition 1 (Bilinear algorithm and tensor rank). Let S be any ring (not necessarily commuta-
tive). A bilinear algorithm for multiplying n X n matrices over S with r multiplications consists of
linear forms Uy (A) in the entries of A € S™*™ linear forms Vi(B) in the entries of B € S™*", and
output recombination maps, such that AB can be reconstructed from the r products Uy(A) - Vi(B)
computed in S. When S is a matriz algebra over a field, the minimal such r is the tensor rank
of the associated matrix multiplication tensor.

The critical property is stability under blocking: a bilinear algorithm remains correct if scalars
are replaced by blocks, because the proof does not rely on commutativity.

2.2 Commutative straight-line multiplication count

Many “commutative fast schemes” are not bilinear: they exploit commutativity and multiply
expressions that may mix entries from both input matrices. This can reduce the number of
multiplication gates in a straight-line program, but such schemes generally do not lift to block
recursion.

Definition 2 (Variable-multiplication count). Fiz a commutative field K (or commutative ring)
and consider straight-line programs using additions/subtractions, multiplication by fized constants
in K, and multiplications. We define the variable-multiplication count as the number of multipli-
cations in which both operands depend on the inputs. Multiplication by fixed constants is treated
as linear and is not counted.

Remark 1 (Why tensor rank does not follow). A commutative 46-multiplication scheme for
4 x4 multiplication does not imply rank((4,4,4)) < 46: the scheme can be non-bilinear. Therefore,
composing a bilinear 48-multiplication block algorithm with a commutative 46-multiplication scalar

routine yields a 2208-multiplication straight-line algorithm, but does not yield a tensor-rank bound
for (16,16, 16).

3 Building blocks

3.1 Outer block algorithm: 48 multiplications for non-commutative 4 x 4

Dumas—Pernet—Sedoglavic give an explicit 4 x 4 non-commutative bilinear algorithm using 48
multiplications with rational coefficients; the construction is valid over rings containing an inverse
of 2 [2]. Their introduction positions this result as removing a prior “complex coefficients”
requirement for 48-multiplication schemes [2].

Lemma 1 (Dumas—Pernet—-Sedoglavic [2]). Over any ring S in which 2 is invertible, there ex-
ists a non-commutative bilinear algorithm that multiplies two 4 x 4 matrices over S using 48
multiplications in S.

3.2 Inner scalar algorithm: 46 multiplications for commutative 4 x 4

For commutative rings (typically assuming the availability of division by 2), Waksman obtained
a 46-multiplication scheme for 4 x 4 multiplication [3]. Drevet-Islam—Schost list (4,4,4) = 46 in
their commutative table (Table 4 in [1]). Rosowski discusses division-by-2 issues in commutative
schemes and presents division-free algorithms for even sizes [4].

Lemma 2 (Waksman multiplication count (commutative 4 x 4)). Let K be a commutative field.
There exists a commutative 4 X 4 multiplication routine using 46 variable multiplications in the
sense of Section 2.2. [1,|3]

Remark 2. Rosowski explicitly notes that some commutative schemes rely on divisions by 2 and
provides division-free constructions for even n [4]. In this paper we assume char(K) # 2 anyway,
due to the outer algorithm [2].

4 Hybrid 16 x 16 construction

4.1 High-level description

Let K be a commutative field with char(K) # 2. We write a 16 x 16 matrix as a 4 x 4 block
matrix with 4 x 4 blocks over K. The ring of blocks is S = K***, which is non-commutative, but
contains % since K does. Therefore the 48-multiplication non-commutative 4 x 4 algorithm [2]
can be applied to multiply block matrices, producing 48 block products X; -Y; with X, Y; € K4**

and additional linear combinations on blocks.

Each of the 48 block products is then computed over K using a 46-multiplication commutative 4 x4
routine [3,/4]. This yields a total of 48 - 46 scalar (field) multiplications between input-dependent
quantities.

4.2 Main theorem and proof

Theorem 1 (2208 variable multiplications for 16 x 16). Let K be a commutative field with
char(K) # 2. Then the product of two 16 x 16 matrices over K can be computed using ezxactly
2208 wvariable multiplications, plus additions/subtractions and multiplications by fixed rational
constants.

Proof. View A, B € K'*16 as 4 x 4 matrices over the ring S = K***. Since char(K) # 2, the
element 2 is invertible in S. Apply the Dumas—Pernet—Sedoglavic bilinear 4 x 4 algorithm over
S |2]. This computes the block product using 48 multiplications in S, each being a multiplication
of two 4 x 4 blocks over K.

Compute each block product using a 46-multiplication commutative 4 x 4 routine over K [3,|4].
Thus each block product costs 46 variable multiplications in K.

Therefore the total variable-multiplication count is 48 - 46 = 2208. All other operations are
additions and multiplications by fixed constants from Z[%], which are linear under the counting
convention of Section 2.2. Correctness follows from correctness of the outer block algorithm over
S and correctness of the inner scalar routine over K. O

4.3 Algorithm pseudocode

We state the construction in “two-layer” form. The outer algorithm is a specific straight-line
program from [2]; we treat it as a black box that produces 48 block multiplicands and a linear

recombination to output blocks.

Algorithm 1 Hybrid 16 x 16 matrix multiplication (multiplication count 48 - 46)
Require: A, B € K!*16 with char(K) # 2
Ensure: C = AB

1: Partition A, B into 4 x 4 blocks A;;, B;; € K4x4,

2: Use the 48-multiplication non-commutative 4 x 4 bilinear algorithm over S = K*** [2] to
form linear combinations (X;){; of blocks of A and (Y;)$2; of blocks of B, and output
recombination coefficients.
for t =1 to 48 do

Compute P, < Comm46(Xy,Y};) using a 46-multiplication commutative 4 x 4 routine [3}/4].
end for
Linearly recombine the P;’s (as prescribed by [2]) to obtain output blocks Cj;.
Assemble the 16 x 16 matrix C' from the 4 x 4 blocks Cj;.

5 Relation to published tables and the “2212 barrier”

5.1 What Drevet—Islam—Schost report

Drevet—Islam—Schost provide tables of upper bounds for small dimensions derived from systematic
compositions of known schemes. Their commutative case table (Table 4) lists:

o (4,4,4) =46 (“Waksman”),
o (16,16,16) = 2212.
[1]

At the time of [1], the best-known non-commutative bilinear cost for (4,4,4) over general rings
was 49 (from two levels of Strassen recursion), so the natural block-based “outer x inner” product
could not reach 48 - 46.

5.2 Why 48 matters

Dumas—Pernet—Sedoglavic explicitly state that the non-commutative 4 x 4 multiplication count
was reduced from 49 to 48 with complex coeflicients by a recent automated discovery pipeline,
and that their contribution is a rational-coefficient version |2]. Once a rational 48-multiplication
outer block algorithm exists, the 48 - 46 hybrid becomes available.

6 Verification

6.1 Counting model

Our verifier counts only variable multiplications: multiplying two values that depend on the
inputs increments a global counter; multiplying by a fixed constant (e.g., :l:%) is treated as linear
and is not counted. This matches a straight-line (arithmetic-circuit) counting convention where
we count multiplications between input-dependent expressions, and aligns with the definition in
Section 2.2.

6.2 Exact arithmetic and tests
We implement:

e a 46-multiplication commutative 4 x 4 routine (“Rosowski-style”),

e a 48-multiplication bilinear 4 x 4 routine with rational coefficients,
e the hybrid 16 x 16 composition,

and validate equality against the naive product on random integer test cases using exact arithmetic
(fractions.Fraction). The corresponding code artifact is available at [5].

7 Practical considerations

7.1 Addition count and data movement

For floating-point BLAS-style workloads, reducing the multiplication count by a fraction of a
percent rarely translates directly into a speedup: additions, temporaries, and memory traffic may
dominate. This is consistent with the discussion in |1], which highlights contexts where base-ring
multiplication (not addition) is the bottleneck.

7.2 Constant scalings

The outer 48-multiplication algorithm uses rational coefficients and requires a ring containing
% [2]. Under our counting model, multiplications by fixed constants are treated as linear. If one
wishes to count all scalar multiplications (including by constants), one should account for these
scalings separately; this paper does not attempt to optimize that metric.

8 Scaling impact and cascaded savings

The improvement from 2212 to 2208 variable multiplications is small in relative terms, but it
scales linearly with the number of 16 x 16 products executed inside a larger computation.

8.1 Per-kernel reduction

Relative to the 2212-multiplication upper bound in [1], our kernel saves 4 variable multiplications:
2212 —2208 4
2212 2212

In a cost model where variable multiplications dominate time and energy, this corresponds to an
idealized speedup factor

~ 1.808 x 1072 = 0.1808%.

2212
—— =~ 1.00181.
2208 0018

In practice, realized wall-clock speedups can be smaller because additions, memory traffic, and
constant scalings may dominate (Section [7)).

8.2 Propagation to larger powers of two

Let an overall matrix multiplication method (tiled, recursive, or otherwise) invoke a 16 x 16 mul-
tiplication subroutine 7" times on scalar entries of K. Replacing a 2212-multiplication subroutine
by the present 2208-multiplication one reduces the variable-multiplication count by exactly 47T

Two common ways 1" scales with matrix size are:

Classical blocked (tiled) multiplication. For multiplying N x N matrices with N a multiple
of 16, a purely blocked classical algorithm performs 7' = (N/16)3 multiplications of 16 x 16 tiles,

hence saves 3
e
16

variable multiplications versus a 2212-multiplication 16 x 16 kernel.

Strassen-style recursion with a 16 x 16 base case. For N = 16 - 2%, applying Strassen
recursion k times yields T = 7% leaf products of size 16 x 16, hence saves

4.7k

variable multiplications in the leaves. (Additional additions occur at each recursion level; we do
not attempt to optimize those.)

Table 1: Cascaded savings in variable multiplications relative to a 2212-multiplication 16 x 16
kernel. For N = 16 - 2*, the table shows the number of leaf 16 x 16 products and total saved
variable multiplications for (i) k levels of Strassen recursion and (ii) classical 16 x 16 tiling.

k N #leaves (Strassen) saved mults #tiles (blocked) saved mults

~—

0 16 1 4 1 4
1 32 7 28 8 32
2 64 49 196 64 256
3 128 343 1372 512 2048
4 256 2401 9604 4096 16384
5 512 16807 67228 32768 131072
6 1024 117649 470596 262144 1.05 x 106
7 2048 823543 3.29 x 106 2.1x 105 8.39 x 106
8 4096 5.76 x 106 2.31 x 107 1.68 x 107 6.71 x 107

As a concrete example, for N = 4096 (i.e., k = 8), the savings are 4 - 78 = 23,059,204 variable
multiplications for an 8-level Strassen recursion down to 16 x 16, and 4 - (4096/16)3 = 67,108,864
variable multiplications for a purely

Remark 3 (No direct block-level recursion). The 2208-multiplication method is a commutative
straight-line program and is not a non-commutative bilinear algorithm. Consequently, it cannot
be used directly as a block-level multiplication routine over non-commutative rings (e.g., where
scalars are themselves matrices). The propagation discussed above concerns using the 16 x 16
algorithm as a leaf routine on scalar matrices over K inside larger tiled or recursive schemes.

blocked classical algorithm.

8.3 Interpreting “small” percentage improvements

Even a 0.1808% reduction in variable multiplications can be meaningful in regimes where: (i) mul-
tiplication is substantially more expensive than addition (e.g., multiprecision integers, polynomial
rings, exact arithmetic); and (ii) the workload executes enormous numbers of small products. In
such regimes, the absolute savings can be large, while the relative savings remain fixed at 4/2212
on the multiplication-dominated portion of the computation.

9 Conclusion

We record a simple hybrid composition that yields a 16 x 16 matrix multiplication algorithm using
2208 variable multiplications over any commutative field of characteristic # 2. The construction
relies on:

e a rational-coefficient 48-multiplication non-commutative 4 x 4 bilinear algorithm [2], used
at the block level, and

e a 46-multiplication commutative 4 x 4 scheme [3}/4], used only at the scalar level.

We stress that the result concerns commutative straight-line multiplication count, not tensor rank
for (16,16, 16). An exact-arithmetic verifier accompanies the construction.

A Key multiplication counts (summary table)

Table 2: Selected commutative multiplication counts appearing in the cited literature

Problem Source / description Variable

mults

{
(
{
(
{
(
{
(

4,4, 4) Waksman scheme listed by Drevet—Islam—Schost 46
commutative) (Table 4) [1]; see also [3}/4]

4,4, 4) Dumas—Pernet—Sedoglavic |2] 48
non-commutative)

16,16, 16) Drevet—Islam—Schost (Table 4) [1] 2212
commutative)

16,16, 16) This hybrid construction (48 - 46) 2208
commutative)

References

[1]

C.E. Drevet, M.N. Islam, and E. Schost, “Optimization techniques for small ma-
trix multiplication,” Theoretical Computer Science, 412(22):2219-2236, 2011. DOL:
10.1016/j.tcs.2010.12.012.

J.-G. Dumas, C. Pernet, and A. Sedoglavic, “A non-commutative algorithm for multiplying
4 x 4 matrices using 48 non-complex multiplications,” arXiv:2506.13242, 2025.

A. Waksman, “On Winograd’s algorithm for inner products,” IFEE Transactions on Com-
puters, C-19(4):360-361, 1970. DOI: 10.1109/T-C.1970.222926.

A. Rosowski, “Fast Commutative Matrix Algorithm,” arXiv:1904.07683, 2019.

spicylemonade, “faster_16x16: Reference implementation and verifier for a 2208-multiplication
16 x 16 matrix multiplication algorithm,” GitHub repository (main branch), accessed 2026-
02-02. https://github.com/spicylemonade/faster_16x16/tree/main.

A. Fawzi et al., “Discovering faster matrix multiplication algorithms with reinforcement
learning,” Nature, 610:47-53, 2022. DOI: 10.1038/s41586-022-05172-4.

https://github.com/spicylemonade/faster_16x16/tree/main

	Introduction
	The 2212 reference point
	Contributions and scope

	Computation models and terminology
	Non-commutative bilinear algorithms (tensor rank)
	Commutative straight-line multiplication count

	Building blocks
	Outer block algorithm: 48 multiplications for non-commutative 44
	Inner scalar algorithm: 46 multiplications for commutative 44

	Hybrid 1616 construction
	High-level description
	Main theorem and proof
	Algorithm pseudocode

	Relation to published tables and the ``2212 barrier''
	What Drevet–Islam–Schost report
	Why 48 matters

	Verification
	Counting model
	Exact arithmetic and tests

	Practical considerations
	Addition count and data movement
	Constant scalings

	Scaling impact and cascaded savings
	Per-kernel reduction
	Propagation to larger powers of two
	Interpreting ``small'' percentage improvements

	Conclusion
	Key multiplication counts (summary table)

