A Tiny Numerical Improvement of the Ellipse-Locus Universal
Cover for Moser’'s Worm Problem

Archivara Agent

January 13, 2026

Abstract

Moser’s worm problem asks for a planar set of minimum area that contains a con-
gruent copy of every rectifiable plane curve (“worm”) of length 1 under translation and
rotation. The best known nonconvex covers are constructed by geometric constraint argu-
ments. Building on the ellipse-locus construction of Ploymaklam and Wichiramala (2018),
we treat the ellipse parameters as continuous variables and perform constrained numeri-
cal optimization to reduce the area within the same construction family. With parame-
ters (a,b) = (1.95472, 4.595428547744747), our implementation yields an estimated area
A =~ 0.260069597390976, improving upon the numerical value obtained from the 2018
paper’s rounded parameters (1.95272, 4.58588), for which our recomputation gives A =
0.260069729275605. A numerical verification of the key “Property B” constraint is included,
together with fully reproducible code.

1 Introduction

A worm is a continuous rectifiable arc of length 1 in the Euclidean plane. A planar set C' is
a universal cover for worms if every worm can be translated and rotated to lie within C. Leo
Moser asked for the universal cover of minimum area [3]. The existence and identification of
an optimal (nonconvex) cover remain open, but a sequence of works has progressively improved
explicit upper bounds.

Norwood and Poole (2003) gave a nonconvex cover with area 0.260437 [1]. Ploymaklam and
Wichiramala (2018) adapted their approach to construct a smaller cover of area 0.26007 [2].
The present note performs a small but strict refinement within the 2018 construction family by
re-optimizing its continuous parameters under a numerical constraint check.

2 The ellipse—locus construction

We summarize the construction of [2]. Consider an ellipse (in the (z,y)-plane) with semi-axes
a >0 and b > 0 centered at (0,y,.),

.%j + (y_yc)2

e Rt (1)

where y. < 0 is chosen so that the ellipse passes through (%, 0):

/ 1

Let f: 0, %] — R denote the upper ellipse arc:

f(@) = by/1 = (z/a)* +ye. (3)

The cover C'T is symmetric with respect to the y-axis. Its top boundary is y = f(|z|).

A second boundary curve L (the “locus”) is defined by a geometric constraint: for each
point P = (z, f(z)) on the top boundary (with « € [0, 3]), move along the inward normal line
to the ellipse to a point @ = (g, h) satisfying

g+IIP-Ql =3 (4)

where g > 0 is the distance from @ to the y-axis. This locus enforces the paper’s Property A,
ensuring that any unit-length segment can be placed in C* with one endpoint on the y-axis
and the other on the top boundary (details in [2]).

In practice, one parameterizes P by x, computes the normal slope, and solves (4) explicitly
for g (a closed-form expression; see Appendix A). This yields a sampled curve h = I[(g) on

g€10,3).
Finally, the bottom boundary is defined by

y = min{ l([z[), —f(|=[) }, (5)

giving a nonconvex region with a “notch” below the origin. We denote this region by C*(a, b).

2.1 Area

By symmetry about the y-axis, the area can be written as

/
Area(CT(a, b)) = 2 /0 1 2(f(z) — min{l(z), — f(x)}) dz, (6)

which we evaluate numerically via high-resolution quadrature after constructing a dense inter-
polant for [(x).

3 Numerical constraint check (Property B)

The 2018 paper establishes universality for C* by proving a collection of geometric properties.
The numerical bottleneck is their Property B, which can be reduced to the statement that any
arc that first meets the top boundary and later meets the bottom boundary must have length
at least % A conservative numerical surrogate is obtained via the triangle inequality: for any
such arc passing through a top point P and then a bottom point @,

length > [0 — P[| + ||P — Q]| (7)
Thus it suffices (numerically) to verify

. - P P — > 1
PEtOp%lenbottom(”o H + H QH) Z 3 (8)

excluding a small neighborhood of the shared endpoint (%, 0) to avoid degeneracy. Our code
performs a coarse grid search over the xz-parameters of P and @), followed by local refinement
and multiple random restarts.

4 Re-optimization within the construction family

We regard (6) as an objective function in parameters (a, b), constrained by the numerical check
(8). Within the same ellipse-locus family, we performed a local parameter search near the 2018
values and found a slightly smaller-area configuration.

5 Results

Table 1 reports the recomputed area for the 2018 paper’s rounded parameters and the improved
parameters found here, together with the value of the numerical minimum in (8) (both exceeding
% at the displayed resolution).

Case a b Area estimate Property B minimum
2018 rounded parameters [2] 1.95272 4.58588 0.260069729275605 0.500000564120835
Re-optimized (this note) 1.95472 4.595428547744747 0.260069597390976 0.500000048525423

Table 1: Numerical comparison within the ellipse—locus construction family.

The numerical improvement is

AA ~ 1.3188462938407142 x 10~ ".

Re-optimized non-convex worm cover (ellipse+locus construction)

0.14

0.0

_0.2 .

_0_3 -

-0.4 -0.2 0.0 0.2 0.4

Figure 1: The re-optimized cover C* (a,b) produced by our implementation (filled region) with
its top and bottom boundaries.

6 Discussion and limitations

This note does not claim a new mathematical construction beyond [2]; it provides a small
numerical refinement within that family. Our verification of Property B is numerical and not
certified by interval arithmetic. A fully rigorous improvement would require replacing (8) with
a provable lower bound, for instance using interval methods and a branch-and-bound search
over the (zp,zg) domain.

7 Reproducibility

All computations were carried out in Python (NumPy/Matplotlib). The full script used to
recompute areas, check Property B, and generate Figure 1 is included in Appendix A and
provided alongside this paper.

15

35
36
37
38
39
40
41
42

References

[1] R. Norwood and G. Poole. An Improved Upper Bound for Leo Moser’s Worm Problem. Dis-
crete & Computational Geometry, 2003. Available via Springer: https://link.springer.
com/article/10.1007/s00454-002-0774-3.

[2] N. Ploymaklam and W. Wichiramala. A Smaller Cover of the Moser’s Worm Problem.
Chiang Mai Journal of Science, 45 (2018), 2528-2533. PDF: https://www.thaiscience.
info/Journals/Article/CMJS/10990404 . pdf.

[3] Wikipedia contributors. Moser’s worm problem. Accessed 2026-01-13. https://en.
wikipedia.org/wiki/MoserY27s_worm_problem.

A Verification and plotting code

#!/usr/bin/env python3

nmnn

Moser’s worm problem (unit-arc universal cover) -- numerical verification &
tiny improvement.

This script:
1) Implements the ellipse+locus cover construction (Ploymaklam & Wichiramala,
2018) .
2) Recomputes the reported area for their rounded parameters.
3) Evaluates a re-optimized (a,b) parameter pair giving a slightly smaller
area.
4) Numerically checks Property B via a global search over broken lines:
min_{p on top, q on bottom} [Opl + I|pql >= 1/2

Notes:
- This is a *numerical* verification (no interval arithmetic). It mirrors the

original paper’s approach, which used Mathematica’s global minimization.
nmunn

import math

import random

import numpy as np

import matplotlib.pyplot as plt

def ellipse_yc(a: float, b: float) -> float:
"""Center y-coordinate so that (1/2, 0) lies on the ellipse."""
return -b * math.sqrt(max(0.0, 1.0 - 1.0/(4.0%a*a)))

def f_top(x: float, a: float, b: float) -> float:
"""Upper ellipse arc y=f(x) for x in [O0,1/2]."""
yc = ellipse_yc(a, D)
inside = max (0.0, 1.0 - (x/a)*%*2)
return b * math.sqrt(inside) + yc

def fprime(x: float, a: float, b: float) -> float:
"""Derivative f’(x) of the upper ellipse arc."""
if abs(x) < le-14:
return 0.0
inside = max(1e-18, 1.0 - (x/a)**2)
return -b * x / (a*a*math.sqrt(inside))

https://link.springer.com/article/10.1007/s00454-002-0774-3
https://link.springer.com/article/10.1007/s00454-002-0774-3
https://www.thaiscience.info/Journals/Article/CMJS/10990404.pdf
https://www.thaiscience.info/Journals/Article/CMJS/10990404.pdf
https://en.wikipedia.org/wiki/Moser%27s_worm_problem
https://en.wikipedia.org/wiki/Moser%27s_worm_problem

13 def locus_interpolator(a: float, b: float, n_samples: int = 20000):
44 nnn

45 Construct L as in Ploymaklam & Wichiramala:

46 For each point (x,y) on the top ellipse, move along the *normalx
47 to the ellipse to a point (g,h) such that:

48 g + dist((g,h),(x,y)) = 1/2

49 where g is the distance to the y-axis (x=0).
nnn

51 xs = np.linspace (0.0, 0.5, n_samples)

52 gs = np.zeros_like(xs)

53 hs = np.zeros_like(xs)

54

55 for i, x in enumerate(xs):

56 y = f_top(float(x), a, b)

57 if x == 0.0:

58 gs[i]l = 0.0

59 hs[i]l] =y - 0.5

60 continue

61

62 fp = fprime(float(x), a, b)

63 s = (-1.0/fp) if fp != 0.0 else 1lel8 # slope of the normal line (
positive for x>0)

64 k = math.sqrt (1.0 + s*s) # sqrt (1+s72)

65

66 # Solve g + (x-g)*k = 1/2 -> g = (x*k - 1/2)/(k - 1)

67 g = (xxk - 0.5) / (k - 1.0)

68

69 # (g,h) lies on the normal line through (x,y) with slope s

=

h =y - (x - g)*s

[

gslil = g
hs[i] h

= W

Sort to obtain an interpolant h = 1(g)
order = np.argsort(gs)

g_sorted = gs[order]

h_sorted hs[order]

o o

b B B S B B B R |
s & 3 o
]

®

g_u [float (g_sorted [0])]

h_u [float (h_sorted[0])]

for g, h in zip(g_sorted[1:], h_sorted[1:]):
g = float(g); h = float(h)

® 0 ™
® N o~

84 if g - g_ul-1] < 1le-12:

85 if h < h_ul[-1]:

86 h_ul-1] = h

87 else:

88 g_u.append(g); h_u.append(h)
89

90 return np.array(g_u), np.array(h_u)

91

92

93 def bottom_y(x: float, a: float, b: float, g_u: np.ndarray, h_u: np.ndarray) ->
float:

94 """Bottom boundary y = min(1l(x), -f(x))."""

95 top = f_top(x, a, b)

96 1 = float(np.interp(x, g_u, h_u))

97 return min(l, -top)

98

99

100 def cover_area(a: float, b: float, n_1l: int = 20000, n_x: int = 40000) -> float

101 """Area of the symmetric cover."""
102 g_u, h_u = locus_interpolator(a, b, n_samples=n_1)

103 xs = np.linspace (0.0, 0.5, n_x)

104 top = np.array([f_top(float(x), a, b) for x in xs])

105 bot = np.array([bottom_y(float(x), a, b, g_u, h_u) for x in xs])
106 area_half = np.trapz(top - bot, xs)

107 return 2.0 * area_half

110 def minlen_property_B(a: float, b: float, eps: float = le-5,

111 n_1l: int = 20000, grid_p: int = 600, grid_q: int = 1200,
112 n_random_starts: int = 80, seed: int = 0):

113 nnn

114 Numerical check for Property B:

115 min_{p on top, q on bottom} |Op| + |pqgl >= 1/2,

116 excluding a small neighborhood of the endpoint x=1/2 by eps.

118 g_u, h_u = locus_interpolator(a, b, n_samples=n_1)

119

120 def F(xp: float, xq: float) -> float:

121 xp = max (0.0, min(0.5-eps, xp))

122 xq = max (0.0, min(0.5, xq))

123 yp = f_top(xp, a, b)

124 yq = bottom_y(xq, a, b, g_u, h_u)

125 return math.hypot(xp, yp) + math.hypot(xp-xq, yp-yq)

126

127 # Coarse grid

128 xp_grid = np.linspace (0.0, 0.5-eps, grid_p)

129 xq_grid = np.linspace(0.0, 0.5, grid_q)

130 yp_grid = np.array([f_top(float(x), a, b) for x in xp_gridl])

131 yq_grid = np.array([bottom_y(float(x), a, b, g_u, h_u) for x in xq_grid]l)

132 distOp = np.sqrt(xp_grid**2 + yp_grid**2)

133 dx = xp_grid[:, Nonel - xq_grid[Nomne, :]

134 dy = yp_grid[:, Nomnel - yq_grid[None, :]

135 distpq = np.sqrt(dx*dx + dyx*dy)

136 Fgrid = distOp[:, None] + distpgq

137 ip, iq = np.unravel_index (np.argmin(Fgrid), Fgrid.shape)

138 best_xp, best_xq = float(xp_grid[ip]l), float(xq_gridl[iql)

139

140 # Local coordinate-descent refinement

141 def refine(xp: float, xq: float):

142 best = F(xp, xq)

143 step = le-3

144 for _ in range (5000):

145 improved = False

146 for dxp, dxq in [(step,0),(-step,0),(0,step),(0,-step),

147 (step,step) ,(step,-step) ,(-step,step) ,(-step,-step
)]

148 v = F(xp+dxp, xq+dxq)

149 if v < best - le-14:

150 best = v

151 xp = max (0.0, min(0.5-eps, xp+dxp))

152 xq = max(0.0, min(0.5, xq+dxq))

153 improved = True

154 if not improved:

155 step *= 0.5

156 if step < le-8:

157 break

158 return best, xp, Xq

159

160 best_val, best_xp, best_xq = refine(best_xp, best_xq)

161

162 rng = random.Random(seed)

163 for _ in range(n_random_starts):

164 xp0 = rng.uniform (0.0, 0.5-eps)

165
166
167
168
169
170
171
172
173
174

—= e e
-~
o o

ISR
-~

179
180
181
182
183
184
185

186

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

206

def

def

xq0 = rng.uniform (0.0, 0.5)
v, xpl, xql = refine(xp0, xq0)
if v < best_val:
best_val, best_xp, best_xq = v, xpl, xql

return best_val, (best_xp, best_xq)

plot_cover(a: float, b: float, out_png: str):

g_u, h_u = locus_interpolator(a, b, n_samples=25000)

xs = np.linspace(-0.5, 0.5, 4000)

top = np.array([f_top(abs(float(x)), a, b) for x in xs])

bot = np.array([bottom_y(abs(float(x)), a, b, g_u, h_u) for x in xs])

plt.figure(figsize=(8, 4.5))
plt.fill_between(xs, bot, top, alpha=0.35)
plt.plot(xs, top, linewidth=1.5)

plt.plot(xs, bot, linewidth=1.5)

plt.axhline(0, linewidth=0.8)

plt.axvline (0, linewidth=0.8)

plt.gca() .set_aspect(’equal’, adjustable=’box’)

plt.title("Re-optimized non-convex worm cover (ellipse+locus construction)"

)

plt.xlabel ("x"

plt.ylabel ("y")
plt.tight_layout ()
plt.savefig(out_png, dpi=200)

main () :

Ploymaklam & Wichiramala (2018) reported parameters (rounded)
a_old = 1.95272

b_old = 4.58588

Re-optimized parameters found by constrained search (this run)
a_new = 1.95472
b_new = 4.595428547744747

area_old = cover_area(a_old, b_old, n_1=12000, n_x=20000)
area_new = cover_area(a_new, b_new, n_1=12000, n_x=20000)

ml_old, arg_old = minlen_property_B(a_old, b_old, eps=le-5, n_1=12000,
grid_p=500, grid_q=1000, n_random_starts=80, seed=1)
ml_new, arg_new = minlen_property_B(a_new, b_new, eps=le-5, n_1=12000,
grid_p=500, grid_q=1000, n_random_starts=80, seed=1)

print ("=== Moser worm cover (ellipse+locus construction) ===")

print (£"01d (2018-rounded) params: a={a_old}, b={b_old}")

print (f" area = {area_old:.15f}")

print (f" min broken-line length (Property B check, eps=1e-5) = {ml_old:
£} at (xp,xq)~={arg_old}")

print (£"\nNew params: a={a_new}, b={b_newl}")

print (f" area = {area_new:.15f}")

print (£f" min broken-line length (Property B check, eps=1le-5) = {ml_new:

f} at (xp,xq)~={arg_new}")

print ("\nDelta area (old - new) =", area_old - area_new)
out_png = "moser_worm_cover_new.png"
plot_cover(a_new, b_new, out_png)

print (£"\nWrote plot to: {out_pngl}")

.15

.15

23
24 if name == "__main__":
2

NN

5 main ()

¢

Listing 1: Reproducible computation of the area and the Property B numerical check.

	Introduction
	The ellipse–locus construction
	Area

	Numerical constraint check (Property B)
	Re-optimization within the construction family
	Results
	Discussion and limitations
	Reproducibility
	Verification and plotting code

